organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethyl 3,3-dimethoxy-4,4'-methylenedi-2-naphthoate

Rui He, En Gao, Shao-Jin Gu and Da-Bin Qin*

School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: gindabincwnu@yahoo.com.cn

Received 9 July 2007; accepted 11 July 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 16.5.

In the title compound, $C_{27}H_{24}O_6$, the two naphthalene ring systems are nearly perpendicular to one another with a dihedral angle of 87.77 (2)°. The molecular structure is stabilized by several C-H···O intramolecular hydrogen bonds. In the crystal structure, inversion-related molecules are linked through π - π interactions [centroid-centroid distance = 3.6311 (6) Å and perpendicular distance between unsubstituted aromatic rings = 3.476 Å] between the naphthalene ring systems and also by C-H··· π interactions. In addition, C-H···O intermolecular interactions are observed.

Related literature

For synthesis, see: Georghiou *et al.* (1996). For related structures, see: Haynes *et al.* (2006) and Liu *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{27}H_{24}O_6\\ M_r = 444.46\\ \text{Monoclinic, } P2_1/c\\ a = 12.9871 \ (4) \ \text{\AA}\\ b = 20.0999 \ (5) \ \text{\AA} \end{array}$

c = 8.7466 (3) Å $\beta = 106.798 (1)^{\circ}$ $V = 2185.78 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 153 (2) K

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: none 21180 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.036 & 303 \text{ parameters} \\ wR(F^2) &= 0.099 & \text{H-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} &= 0.33 \text{ e } \text{ Å}^{-3} \\ 5007 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.20 \text{ e } \text{ Å}^{-3} \end{split}$$

 $0.59 \times 0.58 \times 0.58 \; \mathrm{mm}$

 $R_{\rm int} = 0.021$

5007 independent reflections 4617 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C4–C9 ring and Cg2 is the centroid of the C15/C16/C21–C24 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···O4	0.95	2.19	3.0871 (13)	158
C11-H11A···O3	0.98	2.47	3.1107 (15)	123
C14−H14A…O1	0.99	2.42	2.8830 (13)	108
$C14 - H14B \cdots O4$	0.99	2.41	2.8768 (12)	108
C17-H17···O1	0.95	2.31	3.2206 (13)	161
C19−H19· · ·O3 ⁱ	0.95	2.58	3.2069 (14)	124
$C22 - H22 \cdots O6^{ii}$	0.95	2.53	3.4172 (13)	156
$C25 - H25A \cdots O6$	0.98	2.49	3.1471 (15)	124
$C5 - H5 \cdots Cg2^{iii}$	0.95	2.82	3.6488 (12)	146
$C11 - H11B \cdots Cg2^{iv}$	0.98	2.78	3.5780 (13)	139

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku/MSC, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Scientific Research Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2414).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Georghiou, P. E., Zhao, P. L., Ashram, M. & Miller, D. O. (1996). *J. Org. Chem.* **61**, 3865–3869.
- Haynes, D. A., Van de Streek, J., Burley, J. C., Jones, W. & Motherwell, W. D. S. (2006). Acta Cryst. E62, 01170–01172.
- Liu, Y.-Y., Ma, J.-F. & Xie, Y.-P. (2006). Acta Cryst. E62, 03786-03787.
- Rigaku/MSC (2004). *RAPID-AUTO*. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3508 [doi:10.1107/S1600536807033909]

Dimethyl 3,3-dimethoxy-4,4'-methylenedi-2-naphthoate

R. He, E. Gao, S.-J. Gu and D.-B. Qin

Comment

Pamoic acid or its derivatives or analogs are used in the pharmaceutical industry for the preparation of medicaments for the treatment of diseases characterized by deposits of amyloid aggregates. We report here the crystal structure of the title compound.

Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges. Both naphthalene ring systems are slightly non-planar, with the dihedral angle between the two benzene rings being 5.06 (4)° for the C1—C10 ring system and 3.92 (3)° for the C15—C24 ring system. The two naphthalene ring systems are almost perpendicular, with a dihedral angle of 87.77 (2)°.

The molecular structure is stabilized by C—H···O hydrogen bonds (Table 1). The crystal structure is stabilized by π - π interactions between the naphthalene ring systems of the inversion related molecules, with a Cg1··· $Cg1^{1}$ distance of 3.6311 (6) Å [symmetry code: (i) 1 - x, 1 - y, 1 - z] where Cg1 is the C4—C9 ring centroid. In addition, weak C—H···O intermolecular hydrogen bonds and C—H··· π interactions involving the C15/C16/C21—C24 ring (centroid Cg2) are observed (Table 1).

Experimental

The title compound was prepared according to the reported procedure of Georghiou *et al.* (1996). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from dichloromethane.

Refinement

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Dimethyl 3,3-dimethoxy-4,4'-methylenedi-2-naphthoate

Crystal data C₂₇H₂₄O₆

 $F_{000} = 936$

$M_r = 444.46$	$D_{\rm x} = 1.351 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 19190 reflections
a = 12.9871 (4) Å	$\theta = 3.0 - 27.5^{\circ}$
<i>b</i> = 20.0999 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 8.7466 (3) Å	T = 153 (2) K
$\beta = 106.798 \ (1)^{\circ}$	Block, colourless
$V = 2185.78 (11) \text{ Å}^3$	$0.59\times0.58\times0.58\ mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	4617 reflections with $I > 2\sigma(I)$
Radiation source: Rotating Anode	$R_{\rm int} = 0.021$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 153(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -14 \rightarrow 16$
Absorption correction: none	$k = -25 \rightarrow 26$
21180 measured reflections	$l = -11 \rightarrow 11$
5007 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.7416P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.099$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
5007 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
303 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0128 (11)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.08724 (6)	0.39859 (4)	0.27018 (9)	0.02037 (17)
02	0.25890 (7)	0.35292 (4)	-0.02411 (9)	0.02536 (18)
O3	0.14283 (7)	0.29602 (4)	0.07285 (9)	0.02582 (18)
O4	0.27501 (6)	0.52935 (4)	0.87194 (8)	0.01955 (16)
O5	0.42601 (7)	0.69099 (5)	0.89705 (11)	0.0326 (2)
O6	0.30271 (7)	0.66608 (4)	1.02247 (10)	0.0298 (2)
C1	0.19780 (8)	0.39958 (5)	0.33629 (12)	0.0168 (2)
C2	0.26229 (8)	0.37440 (5)	0.24159 (12)	0.0180 (2)
C3	0.37214 (8)	0.38001 (5)	0.29508 (12)	0.0197 (2)
Н3	0.4143	0.3669	0.2278	0.024*
C4	0.42325 (8)	0.40517 (5)	0.44938 (12)	0.0184 (2)
C5	0.53713 (8)	0.40633 (5)	0.50967 (13)	0.0226 (2)
Н5	0.5795	0.3926	0.4431	0.027*
C6	0.58662 (9)	0.42690 (6)	0.66216 (14)	0.0251 (2)
Н6	0.6629	0.4274	0.7014	0.030*
C7	0.52378 (9)	0.44744 (5)	0.76095 (13)	0.0235 (2)
H7	0.5582	0.4608	0.8677	0.028*
C8	0.41346 (8)	0.44845 (5)	0.70490 (12)	0.0197 (2)
H8	0.3728	0.4629	0.7732	0.024*
С9	0.35920 (8)	0.42820 (5)	0.54631 (12)	0.0165 (2)
C10	0.24400 (8)	0.42940 (5)	0.48266 (11)	0.01613 (19)
C11	0.03374 (9)	0.34490 (6)	0.32574 (15)	0.0265 (2)
H11A	0.0530	0.3025	0.2859	0.032*
H11B	-0.0443	0.3513	0.2863	0.032*
H11C	0.0561	0.3444	0.4428	0.032*
C12	0.21234 (8)	0.33737 (5)	0.09015 (12)	0.0188 (2)
C13	0.22256 (10)	0.31315 (6)	-0.16796 (13)	0.0273 (2)
H13A	0.2351	0.2660	-0.1407	0.033*
H13B	0.2625	0.3259	-0.2429	0.033*
H13C	0.1456	0.3207	-0.2175	0.033*
C14	0.17457 (8)	0.46359 (5)	0.57397 (12)	0.01689 (19)
H14A	0.0979	0.4546	0.5187	0.020*
H14B	0.1911	0.4441	0.6823	0.020*
C15	0.19164 (8)	0.53865 (5)	0.58891 (11)	0.01617 (19)
C16	0.15427 (8)	0.58152 (5)	0.45237 (12)	0.0166 (2)
C17	0.08944 (8)	0.55826 (5)	0.30175 (12)	0.0196 (2)
H17	0.0715	0.5124	0.2881	0.024*
C18	0.05245 (9)	0.60128 (6)	0.17562 (13)	0.0226 (2)
H18	0.0080	0.5849	0.0767	0.027*
C19	0.07947 (9)	0.66946 (6)	0.19073 (13)	0.0247 (2)
H19	0.0548	0.6984	0.1018	0.030*
C20	0.14131 (9)	0.69356 (5)	0.33394 (13)	0.0229 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H20	0.1590	0.7395	0.3442	0.028*
C21	0.17943 (8)	0.65081 (5)	0.46755 (12)	0.0179 (2)
C22	0.24206 (8)	0.67646 (5)	0.61591 (12)	0.0192 (2)
H22	0.2636	0.7218	0.6244	0.023*
C23	0.27166 (8)	0.63584 (5)	0.74749 (12)	0.0178 (2)
C24	0.24304 (8)	0.56738 (5)	0.73454 (11)	0.01641 (19)
C25	0.19433 (9)	0.52489 (6)	0.95462 (13)	0.0262 (2)
H25A	0.1782	0.5695	0.9866	0.031*
H25B	0.2210	0.4970	1.0498	0.031*
H25C	0.1288	0.5051	0.8839	0.031*
C26	0.33310 (9)	0.66448 (5)	0.90516 (13)	0.0205 (2)
C27	0.48928 (11)	0.72350 (7)	1.04184 (18)	0.0421 (3)
H27A	0.4460	0.7583	1.0722	0.051*
H27B	0.5534	0.7435	1.0231	0.051*
H27C	0.5112	0.6907	1.1280	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0163 (4)	0.0186 (4)	0.0240 (4)	-0.0002 (3)	0.0023 (3)	-0.0011 (3)
02	0.0339 (4)	0.0249 (4)	0.0193 (4)	-0.0056 (3)	0.0107 (3)	-0.0059 (3)
O3	0.0295 (4)	0.0255 (4)	0.0205 (4)	-0.0067 (3)	0.0042 (3)	-0.0030 (3)
O4	0.0234 (4)	0.0196 (4)	0.0162 (3)	0.0032 (3)	0.0066 (3)	0.0020 (3)
05	0.0227 (4)	0.0363 (5)	0.0373 (5)	-0.0077 (3)	0.0063 (3)	-0.0119 (4)
O6	0.0398 (5)	0.0280 (4)	0.0219 (4)	-0.0035 (3)	0.0092 (3)	-0.0062 (3)
C1	0.0170 (5)	0.0138 (4)	0.0187 (5)	0.0009 (3)	0.0038 (4)	0.0012 (3)
C2	0.0222 (5)	0.0144 (4)	0.0169 (4)	0.0007 (4)	0.0050 (4)	-0.0004 (3)
C3	0.0220 (5)	0.0181 (5)	0.0209 (5)	0.0014 (4)	0.0090 (4)	-0.0018 (4)
C4	0.0187 (5)	0.0163 (4)	0.0206 (5)	0.0009 (4)	0.0062 (4)	0.0001 (4)
C5	0.0191 (5)	0.0242 (5)	0.0256 (5)	0.0014 (4)	0.0082 (4)	-0.0023 (4)
C6	0.0164 (5)	0.0291 (6)	0.0278 (5)	0.0004 (4)	0.0035 (4)	-0.0014 (4)
C7	0.0228 (5)	0.0246 (5)	0.0201 (5)	0.0008 (4)	0.0015 (4)	-0.0023 (4)
C8	0.0216 (5)	0.0185 (5)	0.0186 (5)	0.0029 (4)	0.0051 (4)	-0.0010 (4)
C9	0.0180 (5)	0.0130 (4)	0.0183 (5)	0.0010 (3)	0.0050 (4)	0.0007 (3)
C10	0.0185 (5)	0.0127 (4)	0.0176 (4)	0.0010 (3)	0.0059 (4)	0.0010 (3)
C11	0.0212 (5)	0.0240 (5)	0.0354 (6)	-0.0051 (4)	0.0101 (4)	-0.0036 (4)
C12	0.0216 (5)	0.0162 (5)	0.0173 (5)	0.0034 (4)	0.0037 (4)	0.0006 (3)
C13	0.0348 (6)	0.0291 (6)	0.0182 (5)	-0.0013 (5)	0.0077 (4)	-0.0067 (4)
C14	0.0176 (5)	0.0156 (4)	0.0185 (4)	0.0002 (3)	0.0067 (4)	-0.0009 (3)
C15	0.0155 (4)	0.0156 (4)	0.0189 (5)	0.0019 (3)	0.0075 (4)	0.0000 (3)
C16	0.0149 (4)	0.0184 (5)	0.0183 (5)	0.0031 (3)	0.0075 (4)	0.0005 (4)
C17	0.0185 (5)	0.0200 (5)	0.0209 (5)	0.0022 (4)	0.0066 (4)	-0.0014 (4)
C18	0.0196 (5)	0.0288 (6)	0.0187 (5)	0.0030 (4)	0.0042 (4)	-0.0001 (4)
C19	0.0238 (5)	0.0269 (5)	0.0231 (5)	0.0041 (4)	0.0061 (4)	0.0084 (4)
C20	0.0225 (5)	0.0204 (5)	0.0268 (5)	0.0015 (4)	0.0084 (4)	0.0061 (4)
C21	0.0164 (4)	0.0188 (5)	0.0204 (5)	0.0024 (4)	0.0082 (4)	0.0020 (4)
C22	0.0194 (5)	0.0163 (4)	0.0237 (5)	0.0003 (4)	0.0090 (4)	-0.0003 (4)
C23	0.0167 (4)	0.0179 (5)	0.0197 (5)	0.0012 (3)	0.0068 (4)	-0.0023 (4)

C24	0.0162 (4)	0.0166 (4)	0.0176 (4)	0.0029 (3)	0.0067 (4)	0.0007 (3)
C25	0.0307 (6)	0.0294 (6)	0.0218 (5)	-0.0025 (4)	0.0126 (4)	0.0014 (4)
C26	0.0214 (5)	0.0146 (4)	0.0238 (5)	0.0028 (4)	0.0037 (4)	-0.0018 (4)
C27	0.0305 (6)	0.0385 (7)	0.0486 (8)	-0.0085 (5)	-0.0023 (6)	-0.0164 (6)
Geometric parar	neters (Å, °)					
01—C1		1.3843 (12)	C11–	-H11C	0.98	3
01—C11		1.4419 (13)	C13–	-H13A	0.98	8
O2—C12		1.3459 (13)	C13–	-H13B	0.98	8
O2—C13		1.4497 (12)	C13–	-H13C	0.98	8
O3—C12		1.2040 (13)	C14-	C15	1.52	250 (13)
O4—C24		1.3829 (11)	C14-	-H14A	0.99	9
O4—C25		1.4377 (13)	C14-	-H14B	0.99	9
O5—C26		1.3396 (14)	C15-	C24	1.38	821 (13)
O5—C27		1.4507 (15)	C15–	C16	1.43	385 (13)
O6—C26		1.2015 (13)	C16–	C17	1.42	219 (14)
C1-C10		1.3836 (13)	C16–	C21	1.42	280 (14)
C1—C2		1.4299 (14)	C17–	C18	1.31	745 (14)
C2—C3		1.3715 (14)	C17–	–H17	0.95	5
C2—C12		1.4943 (13)	C18–	C19	1.4	114 (16)
C3—C4		1.4142 (14)	C18–	-H18	0.95	5
С3—Н3		0.95	C19–	C20	1.30	665 (16)
C4—C5		1.4196 (14)	C19–	-H19	0.95	5
С4—С9		1.4257 (14)	C20–	C21	1.4	194 (14)
C5—C6		1.3665 (15)	C20–	-H20	0.95	5
С5—Н5		0.95	C21-	-C22	1.4	146 (14)
С6—С7		1.4108 (16)	C22–	-C23	1.37	724 (14)
С6—Н6		0.95	C22–	–H22	0.95	5
С7—С8		1.3738 (15)	C23–	C24	1.42	213 (14)
С7—Н7		0.95	C23–	C26	1.49	946 (14)
С8—С9		1.4217 (14)	C25-	-H25A	0.98	3
С8—Н8		0.95	C25–	–H25B	0.98	3
C9—C10		1.4379 (13)	C25–	-H25C	0.98	3
C10-C14		1.5295 (13)	C27–	–H27A	0.98	3
C11—H11A		0.98	C27–	–H27B	0.98	3
C11—H11B		0.98	C27–	–H27C	0.98	3
C1-01-C11		114.37 (8)	C15–	C14H14A	108	.9
C12—O2—C13		114.39 (8)	C10–	C14H14A	108	.9
C24—O4—C25		113.09 (8)	C15–	C14H14B	108	.9
C26—O5—C27		115.13 (10)	C10–	C14H14B	108	.9
C10-C1-O1		120.85 (9)	H14A	—C14—H14B	107	.7
C10-C1-C2		121.29 (9)	C24–	C15C16	118	.17 (9)
O1—C1—C2		117.60 (9)	C24–	C15C14	120	.79 (9)
C3—C2—C1		119.93 (9)	C16–	C15C14	121	.04 (9)
C3—C2—C12		119.05 (9)	C17–	-C16-C21	117	.72 (9)
C1—C2—C12		120.86 (9)	C17–	C16C15	122	.66 (9)
C2—C3—C4		120.66 (9)	C21-	-C16-C15	119	.59 (9)
С2—С3—Н3		119.7	C18–		120	.86 (10)

С4—С3—Н3	119.7	С18—С17—Н17	119.6
C3—C4—C5	120.78 (9)	С16—С17—Н17	119.6
C3—C4—C9	119.34 (9)	C17—C18—C19	121.06 (10)
C5—C4—C9	119.86 (9)	C17—C18—H18	119.5
C6—C5—C4	120.88 (10)	C19—C18—H18	119.5
С6—С5—Н5	119.6	C20—C19—C18	119.62 (10)
C4—C5—H5	119.6	С20—С19—Н19	120.2
C5—C6—C7	119.61 (10)	С18—С19—Н19	120.2
С5—С6—Н6	120.2	C19—C20—C21	120.86 (10)
С7—С6—Н6	120.2	С19—С20—Н20	119.6
C8—C7—C6	120.93 (10)	C21—C20—H20	119.6
С8—С7—Н7	119.5	C22—C21—C20	120.39 (9)
С6—С7—Н7	119.5	C22—C21—C16	119.75 (9)
C7—C8—C9	121.04 (9)	C20—C21—C16	119.86 (9)
С7—С8—Н8	119.5	C23—C22—C21	119.99 (9)
С9—С8—Н8	119.5	С23—С22—Н22	120.0
C8—C9—C4	117.60 (9)	C21—C22—H22	120.0
C8—C9—C10	122.67 (9)	C22—C23—C24	120.38 (9)
C4—C9—C10	119.72 (9)	C22—C23—C26	119.35 (9)
C1—C10—C9	118.39 (9)	C24—C23—C26	120.26 (9)
C1C10C14	120.95 (9)	C15—C24—O4	120.91 (9)
C9—C10—C14	120.66 (8)	C15—C24—C23	121.57 (9)
01—C11—H11A	109.5	O4—C24—C23	117.38 (9)
O1—C11—H11B	109.5	O4—C25—H25A	109.5
H11A—C11—H11B	109.5	O4—C25—H25B	109.5
O1—C11—H11C	109.5	H25A—C25—H25B	109.5
H11A—C11—H11C	109.5	O4—C25—H25C	109.5
H11B—C11—H11C	109.5	H25A—C25—H25C	109.5
O3—C12—O2	123.26 (9)	H25B—C25—H25C	109.5
O3—C12—C2	124.95 (9)	O6—C26—O5	123.90 (10)
O2—C12—C2	111.68 (9)	O6—C26—C23	125.36 (10)
O2—C13—H13A	109.5	O5—C26—C23	110.69 (9)
O2—C13—H13B	109.5	O5—C27—H27A	109.5
H13A—C13—H13B	109.5	O5—C27—H27B	109.5
O2—C13—H13C	109.5	H27A—C27—H27B	109.5
H13A—C13—H13C	109.5	O5—C27—H27C	109.5
H13B—C13—H13C	109.5	H27A—C27—H27C	109.5
C15—C14—C10	113.34 (8)	H27B—C27—H27C	109.5
C11—O1—C1—C10	-84.36(11)	C10-C14-C15-C24	-109.68 (10)
C11—O1—C1—C2	101.37 (10)	C10-C14-C15-C16	70.68 (11)
C10—C1—C2—C3	-0.43 (15)	C24—C15—C16—C17	-172.29 (9)
O1—C1—C2—C3	173.81 (9)	C14—C15—C16—C17	7.37 (14)
C10-C1-C2-C12	174.96 (9)	C24—C15—C16—C21	5.58 (13)
O1—C1—C2—C12	-10.80 (13)	C14—C15—C16—C21	-174.77 (9)
C1—C2—C3—C4	5.60 (15)	C21—C16—C17—C18	-0.05 (14)
C12—C2—C3—C4	-169.88 (9)	C15-C16-C17-C18	177.86 (9)
C2—C3—C4—C5	175.19 (10)	C16—C17—C18—C19	1.32 (16)
C2—C3—C4—C9	-3.41 (15)	C17—C18—C19—C20	-1.53 (17)
C3—C4—C5—C6	-176.06 (10)	C18—C19—C20—C21	0.45 (16)

C9—C4—C5—C6	2.54 (16)	C19—C20—C21—C22	-179.06 (10)
C4—C5—C6—C7	-0.18 (17)	C19—C20—C21—C16	0.81 (15)
C5—C6—C7—C8	-1.44 (17)	C17—C16—C21—C22	178.87 (9)
C6—C7—C8—C9	0.66 (16)	C15-C16-C21-C22	0.89 (14)
C7—C8—C9—C4	1.67 (15)	C17—C16—C21—C20	-1.01 (14)
C7—C8—C9—C10	-179.14 (10)	C15-C16-C21-C20	-178.98 (9)
C3—C4—C9—C8	175.39 (9)	C20-C21-C22-C23	175.03 (9)
C5—C4—C9—C8	-3.22 (14)	C16-C21-C22-C23	-4.84 (14)
C3—C4—C9—C10	-3.82 (14)	C21—C22—C23—C24	2.27 (15)
C5—C4—C9—C10	177.56 (9)	C21—C22—C23—C26	-176.94 (9)
O1—C1—C10—C9	179.26 (8)	C16—C15—C24—O4	176.06 (8)
C2-C1-C10-C9	-6.68 (14)	C14—C15—C24—O4	-3.59 (14)
O1—C1—C10—C14	-1.45 (14)	C16—C15—C24—C23	-8.33 (14)
C2-C1-C10-C14	172.60 (9)	C14—C15—C24—C23	172.02 (9)
C8—C9—C10—C1	-170.44 (9)	C25—O4—C24—C15	-90.58 (11)
C4—C9—C10—C1	8.74 (14)	C25—O4—C24—C23	93.63 (10)
C8—C9—C10—C14	10.28 (14)	C22—C23—C24—C15	4.53 (15)
C4—C9—C10—C14	-170.55 (9)	C26—C23—C24—C15	-176.27 (9)
C13—O2—C12—O3	-3.15 (15)	C22—C23—C24—O4	-179.71 (9)
C13—O2—C12—C2	173.30 (9)	C26—C23—C24—O4	-0.51 (13)
C3—C2—C12—O3	133.10 (11)	C27—O5—C26—O6	-0.75 (16)
C1—C2—C12—O3	-42.33 (15)	C27—O5—C26—C23	176.75 (10)
C3—C2—C12—O2	-43.28 (13)	C22—C23—C26—O6	118.12 (12)
C1—C2—C12—O2	141.29 (9)	C24—C23—C26—O6	-61.09 (14)
C1-C10-C14-C15	-113.78 (10)	C22—C23—C26—O5	-59.33 (12)
C9—C10—C14—C15	65.48 (12)	C24—C23—C26—O5	121.46 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С8—Н8…О4	0.95	2.19	3.0871 (13)	158
C11—H11A…O3	0.98	2.47	3.1107 (15)	123
C14—H14A…O1	0.99	2.42	2.8830 (13)	108
C14—H14B…O4	0.99	2.41	2.8768 (12)	108
C17—H17…O1	0.95	2.31	3.2206 (13)	161
C19—H19····O3 ⁱ	0.95	2.58	3.2069 (14)	124
C22—H22···O6 ⁱⁱ	0.95	2.53	3.4172 (13)	156
C25—H25A…O6	0.98	2.49	3.1471 (15)	124
C5—H5···Cg2 ⁱⁱⁱ	0.95	2.82	3.6488 (12)	146
C11—H11B···Cg2 ^{iv}	0.98	2.78	3.5780 (13)	139

Symmetry codes: (i) -x, -y+1, -z; (ii) x, -y+3/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1.

